Engineering Submittal Sheet

Product Features

Standard Features

1 of 16

- ▶ Up to 96% AFUE heating efficiency, ENERGY STAR rated
- 5-year parts limited warranty, 20 year heat exchanger limited warranty
- Reliable, proven two-stage design
- Compatibility with the Bosch Connected Control BCC100 Thermostat
- 3-way multipoise design allows for flexibility in multiple types of installations
- Field convertible gas type for hassle-free installation, all furnaces come standard with a natural gas to propane gas conversion kit
- Multi-speed ECM motors for all models for quiet and efficient operation
- Hot-surface ignition for dependable operation

- Durable aluminized steel tubular heat exchanger and stainlesssteel (AL 29-4C alloy) secondary heat exchanger
- Pairs with Bosch IDS heat pump, reaching up to 18.5 SEER2, meeting heat pump ENERGY STAR requirements for some combinations
- ▶ LED fault diagnostics for quick and easy service calls

This product is not to be sold or installed in the State of California in the South Coast Air Quality Management District or San Joaquin Valley Air Basin territory.

Product Features continued..

Cabinet Features

- ▶ Low profile (33.75") cabinet can fit in tight spaces.
- Convenient left or right-hand connection for gas and electric service.
- Anti-rust: Painted, galvanized, 21 gauge steel cabinet, passes a 500 hours salt spray test
- Low noise: Fully insulated (fiberglass insulation) design helps minimize indoor noise levels
- 3-way multipoise design allows for flexibility in multiple types of installations
 - Upflow (side or bottom return)
 - Horizontal

Warranty*

All models installed in one or two family residential dwellings come standard with a 5 year limited warranty on parts and a 20 year limited warranty on primary & secondary heat exchangers. With registration of the product on bosch-climate.us, the 5 year limited warranty on parts shall be upgraded to 10 years, and the 20 year limited warranty on primary & secondary heat exchangers shall be upgraded to lifetime. Furnaces installed in applications other than one or two family residential dwellings will qualify for a 1 year limited warranty on parts and a 10 year limited warranty on the heat exchanger.

BOSCH

For complete Warranty details please see: <u>https://www.bosch-climate.us/support-center/product-warranty-library/gas-</u> <u>furnace-warranty.html</u>

Key Components

2 of 16

COMPONENT IDENTIFICATION:

- 1. Outlet Flue Vent
- 2. Flame Sensor
- 3. Primary Limit Switch
- 4. Condensate Overflow Switch
- 5. Inducer
- 6. Door Switch
- 7. Integrated Control Module
- 8. Blower
- 9. Transformer
- 10. Condensate Trap
- 11. Juction Box
- 12. Condensate Collector
- 13. Pressure Switch
- 14. Two-Stage Gas Valve
- 15. Hot Surface Ignitor
- 16. Gas Manifold
- 17. Air Inlet
- 18. Burner
- 19. Rollout Limit Switch
- 20. Blower Contol Module

* Nominal 350-400 CFM per 12,000 BTU/hr

3 of 16

Bosch Thermotechnology Corp. Londonderry, NH • Watertown, MA • Ft. Lauderdale, FL

Furnace Model	"A" Cabinet Width In. (mm)	"D" Supply- Air Width In. (mm)	"E" Return- Air Width In. (mm)	Shipping Weight Ibs (kgs)
BGH96M060B3C	17.5 (445)	16 (407)	15-57/32 (427)	147.5 (66.9)
BGH96M080B3C	17.5 (445)	16 (407)	15-57/32 (427)	153 (69.4)
BGH96M080C4C	21 (534)	19.5 (496)	19-13/32 (493)	165 (74.8)
BGH96M100C5C	21 (534)	19.5 (496)	19-13/32 (493)	173 (78.5)
BGH96M100D5C	24.5 (623)	23 (585)	22-27/32 (581)	185 (83.9)
BGH96M120D5C	24.5 (623)	23 (585)	22-27/32 (581)	190 (86.1)

Bosch Thermotechnology Corp. Londonderry, NH • Watertown, MA • Ft. Lauderdale, FL

4 of 16

Technical S	pecification	S							
	Model			BGH96M060B3C	BGH96M080B3C	BGH96M080C4C	BGH96M100C5C	BGH96M100D5C	BGH96M120D5C
Basic Product	Bosch Part Num	nber		8733965433	8733965434	8733965435	8733965436	8733965437	8733965438
Information	Fuel Type			Natural Gas/ Propane Gas*					
ENERGY STAR	ENERGY STAR	Certified	Y/N	Y	Y	Y	Y	Y	Y
	AFUE		%	96	96	96	96	96	96
	Input (High fire)	Natural Gas/Propane Gas (LP)	Btu/h	60000	80000	80000	100000	100000	120000
Gas	Input (Low fire)	Natural Gas/Propane Gas (LP)	Btu/h	39000	52000	52000	70000	70000	84000
Heating Performance	Output (High fire)	Natural Gas/Propane Gas (LP)	Btu/h	57000	76000	76000	95000	95000	115000
	Output (Low fire)	Natural Gas/Propane Gas (LP)	Btu/h	37000	49000	49000	67000	67000	80500
	Air Temperature	Rise	°F	30-60	35-65	35-65	35-65	35-65	40-70
	Design Max. Ou	Itlet Air Temperature	°F	160	165	165	165	165	170
Static	Certified EXT	Heating	in. WC	0.12	0.15	0.15	0.2	0.2	0.2
Pressure	static pressure	Cooling	in. WC	0.5	0.5	0.5	0.5	0.5	0.5
		Material	-			Me	tal		
	Circulating	Туре	-			EC	Μ		
	Blower	Diameter blower wheel	Inch	12	3/8		12	6/8	
		Height blower wheel	Inch	8			11	1/4	
	Tons AC @ 0.5"	ESP	tons	1.5/2/2.5/3	2.5/3/3.5/4	2.5/3/3.5/4	3.5/4/4.5/5	3.5/4/4.5/5	3.5/4/4.5/5
	Circuating Fan Motor	Motor Horsepower	HP		3/4			1	
Circulating	Air Flow (0.5 ESP in. WC)	High	CFM	1321	1214	1289	1774	1936	1916
Blower Data	Air Flow (0.5 ESP in. WC)	Mid-High	CFM	1096	1037	1135	1514	1749	1760
	Air Flow (0.5 ESP in. WC)	Mid	CFM	865	855	896	1357	1528	1507
	Air Flow (0.5 ESP in. WC)	Mid-Low	CFM	740	728	813	1185	1381	1382
	Air Flow (0.5 ESP in. WC)	Low	CFM	552	568	615	1032	1174	1158
	Motor Speeds					5	**		
						High/Mid-High/M	1id/Mid-Low/Low		
			r/min			1050	(rated)		
Inducer	Power Input	(High)	W		67±10%			64±10%	
Motor	Power Input	(Low)	W		25±10%			39±10%	
Electrical	Power supply		V/Hz/PH			115V/60	HZ/1PH		
Data	Max Overcurrent	t Protection (MOP***)	Amps		15			20	
	Blower motor fu	ll load (FLA)	Amps	8	8	7.8	11.5	10.5	10.5

* With factory supplied Natural Gas to LP Conversion Kit

** 5 selectable speeds via wiring, unit operates in two speeds in concert with HI/LOW fire operation

*** MOP refers to the maximum recommended fuse or breaker size.

5 of 16

Bosch Thermotechnology Corp. Londonderry, NH • Watertown, MA • Ft. Lauderdale, FL

Technical S	pecifications Co	ontinued											
Model				BGH96M060B3C	BGH96M080B3C	BGH96M080C4C	BGH96M100C5C	BGH96M100D5C	BGH96M120D5C				
		Natural Gas	in. WC			10).5						
	Max. Inlet Gas Press	Propane Gas (LP)	in. WC			1	3						
	Min. Inlet Gas	Natural Gas	in. WC		4.5								
	Press	Propane Gas (LP)	in. WC										
	Natural Gas Manifold fire)	Pressure (High	in. WC	3.5	3.6	3.6	3.6	3.6	3.6				
	Natural Gas Manifold Pressure (Low fire)		in. WC	1.6	1.6	1.6	1.8	1.8	1.8				
	Propane Gas Manifold Pressure (High fire)		in. WC	8.4	8.5	8.5	8.5	8.5	8.5				
Combustion System	Propane Gas Manifol (Low fire)	d Pressure	in. WC	3.7	3.7	3.7	4.3	4.3	4.3				
Specifications	Pecifications Natural Gas Factory Orifice (0-2000 feet) Propane Gas (LP) Factory Orifice (0-2000 feet)*				45								
						5	5						
Gas Connection Size			in. NPT			1,	/2						
	Igniton Device		-			Hot se	urface						
	Number of Burners		#	3	4	4	5	5	6				
	Primary Heat Exchan	ger Diameter	Inch		1 6/8				,				
	Primary Heat Exchan	ger	# tubes	3	4	4	5	5	6				
	Secondary Heat Exch	anger Diameter	Inch			3	/8						
	Secondary Heat Exch	langer	# tubes	33	33	39	39	48	48				
	Flue Vent Diameter		Inch	2"/3"	2"/3"	2"/3"	2"/3"	2"/3"	3"				
	Heating Blower Contr Off-Delay)	ol (Heating	-			Adjustable: 90, 120	, 150, 180 seconds						
Dip Switches	Cooling Blower Contr Delay)	ol (Cool Off-	-			Adjustable: 60, 90,	, 120, 150 seconds						
	Upstage W1 to W2 D	elay	-		А	djustable: OFF, 10 min	utes, AUTO, 20 minut	es					
	Cabinet Type		-	В	В	С	С	D	D				
Cabinet Size	Cabinet Size	Width	Inch	17.5	17.5	21	21	24.5	24.5				
	Cabinet Size (DxH)	(DxH)	Inch			28-3/4 >	K 33-3/4						
	Packing Dimension (with pallet)	(WxDxH)	Inch	32×20×41	32×20×41	32×24×41	32×24×41	32×28×41	32×28×41				
Shipping Data	Net Weight (unit only)		lbs	131	139	142	153.5	162	169				
	Gross Weight (shippir pallet & packaging)	ng weight with	lbs	162	168	186	191	204.0	210				

*All Bosch 96% AFUE Gas Furnaces come standard with Natural Gas to LP Conversion Kits. These kits are only applicable for units installed at elevations between 0 and 2,000 feet.

For LP applications above 2000 ft elevation, the manifold and inlet gas pressure requirements remain the same as stated in this manual, the only change is to the orifices used. Refer Tables 14 & 15 in Section 9.2 of the Installation, Operation, and Maintenance Manual to determine which orifice to use based on your application.

6 of 16

IDS Prem	nium Connected + Ca	ised Coil + 96% Fu	irnace AHRI 210/	/240 Syste	em Perfor	mance Da	ata				IDS Premium Connected + Cased Coil + 96% Furnace AHRI 210/240 System Performance Data										
Nominal		Indoor Unit Model		Cooling	, Capacity	(BTU/h)	Her	ating Capa	city	CFM											
HP System Tonnage	Outdoor Unit Model	Coils/Air Handlers	Furnace Model	Total (BTU/h)	EER2 ²	SEER21	Hi (BTU/h)"	HSPF2 ³	Low (BTU/h)⁴	(High/Low)											
	BOVA-36RTB-M20S	BMAC2430ABTA	BGH96M060B3C	23800	11.7	18	24000	9	19600	750/550	*										
эт	BOVA-36RTB-M20S	BMAC2430ABTA	BGH96M080B3C	23800	11.7	18	24000	9	19600	750/550	*										
21	BOVA-36RTB-M20S	BMAC2430BBTA	BGH96M060B3C	24000	12	18.5	24000	9	20000	750/550	*										
	BOVA-36RTB-M20S	BMAC2430BBTA	BGH96M080B3C	24000	12	18.5	24000	9	20000	750/550	*										
	BOVA-36RTB-M20S	BMAC3036ABTA	BGH96M060B3C	32800	10.6	17	34000	9	25000	1100/800	*										
	BOVA-36RTB-M20S	BMAC3036ABTA	BGH96M080B3C	32800	10.6	17	34000	9	25000	1100/800	*										
	BOVA-36RTB-M20S	BMAC3036BBTA	BGH96M060B3C	33600	11	17.5	34200	9	25000	1100/800	*										
	BOVA-36RTB-M20S	BMAC3036BBTA	BGH96M080B3C	33600	11	17.5	34200	9	25000	1100/800	*										
31	BOVA-36RTB-M20S	BMAC3036CBTA	BGH96M080C4C	33600	11	17.5	34200	9	25000	1100/800	*										
	BOVA-36RTB-M20S	BMAC3036CBTA	BGH96M100C5C	33200	11	17.5	34200	9	25000	1100/1000	*										
	BOVA-36RTB-M20S	BMAC4248BBTA	BGH96M080B3C	33000	11	18	34200	9	25200	1100/800	*										
	BOVA-36RTB-M20S	BMAC4248CBTA	BGH96M100C5C	33000	11.7	18	34200	9	25600	1150/1000	*										
	BOVA-60RTB-M20S	BMAC4248BBTA	BGH96M080B3C	42500	11.7	16	43500	9	35000	1300/900	*										
	BOVA-60RTB-M20S	BMAC4248CBTA	BGH96M080C4C	42500	11.7	16	44500	9	35000	1300/900	*										
4T	BOVA-60RTB-M20S	BMAC4248CBTA	BGH96M100C5C	44000	11.7	16.5	46500	9	35600	1350/1150	*										
	BOVA-60RTB-M20S	BMAC4248DBTA	BGH96M100D5C	44500	11.7	16.5	47000	9	35600	1500/1150	*										
	BOVA-60RTB-M20S	BMAC4248DBTA	BGH96M120D5C	44500	11.7	17	47000	9	35600	1500/1150	*										
	BOVA-60RTB-M20S	BMAC4860CBTA	BGH96M100C5C	51500	11.4	17.5	53500	9	38000	1350/1150	*										
5T	BOVA-60RTB-M20S	BMAC4860DBTA	BGH96M100D5C	51500	11.7	18	54000	9	38500	1500/1150	*										
	BOVA-60RTB-M20S	BMAC4860DBTA	BGH96M120D5C	51500	11.7	18	54000	9	38500	1500/1150	*										

¹ Seasonal Energy Efficiency Ratio 2; Certified per AHRI 210/240

² Energy Efficiency Ratio 2; Certified per AHRI 210/240

³ HSPF2 = Heating Seasonal Performance Factor; Certified per AHRI 210/240

⁴ Jumper cut or dip switch off

7 of 16

Items in **bold** boxes meet the requirements for ENERGY STAR v6.1

✤ Items meet the requirements for ENERGY STAR V6.1 Cold Climate

Air Delivery

The duct system should be designed and sized according to accepted national standards such as those published by: Air Conditioning Contractors Association (ACCA), Sheet Metal and Air Conditioning Contractors National Association (SMACNA) or American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) or consult The Air Systems Design Guidelines reference tables available from your local distributor. The duct system should be sized to handle the required system design CFM at the design external static pressure. The furnace airflow rates are provided in the table below.

Air Deliv	Air Delivery - CFM (Without Filter) * **												
Furnace	Return-air	Spood					Exte	rnal static p	ressure (in.	WC)			
size	inlet	speed		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
			CFM	1339	1327	1338	1309	1321	1320	1342	1334	1316	1335
		Н	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F	37	37.7	37.5	38.3	38.1	38.1	37.6	37.9	38.5	38.0
			CFM	1124	1118	1102	1106	1096	1099	1102	1109	1089	1105
		Mid-H	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F	44.2	44.5	45	45.1	45.6	45.5	45.5	45.3	46	45.6
			CFM	880	870	853	858	865	858	854	866	871	839
60B	Bottom or Sides	Mid	Temp Rise-1st stage °F	36.7	37.2	37.9	37.8	37.6	38	38.2	37.8	37.6	39.1
			Temp Rise-2nd stage °F	56.3	57.0	58.1	58	57.5	58	58.4	57.7	57.4	59.7
			CFM	779	768	762	756	740	753	757	747	785	766
		Mid-L	Temp Rise-1st stage °F	41.4	42.0	42.4	43	43.8	43.1	43.0	43.6	41.6	42.7
			Temp Rise-2nd stage °F										
			CFM	553	586	543	569	552	562	584	572	575	567
		Low	Temp Rise-1st stage °F	58.1	54.9	59	56.7	58.5	57.6	55.5	56.8	56.5	57.4
			Temp Rise-2nd stage °F										
			CFM	1230	1233	1222	1226	1214	1236	1255	1244	1249	1251
		н	Temp Rise-1st stage °F										
	Mid-H		Temp Rise-2nd stage °F	53.9	53.8	54.4	54.3	54.8	53.9	53.2	53.7	53.6	53.6
			CFM	1052	1052	1041	1044	1037	1034	1048	1046	1024	1076
		Mid-H	Temp Rise-1st stage °F	41.0	41.0	41.5	41.5	41.8	42.1	41.5	41.7	42.7	40.7
			Temp Rise-2nd stage °F	62.8	62.8	63.6	63.5	64	64.3	63.4	63.7	65.1	62.1
			CFM	849	861	854	853	855	844	855	848	834	859
80B	Bottom or Sides	Mid	Temp Rise-1st stage °F	50.6	50.0	50.4	50.5	50.5	51.2	50.6	51.2	52.1	50.7
			Temp Rise-2nd stage °F										
		Mid-L	CFM	754	771	765	764	728	761	782	739	758	758
			Temp Rise-1st stage °F	56.9	55.7	56.2	56.3	59.2	56.8	55.3	58.5	57.2	57.3
			Temp Rise-2nd stage °F										
			CFM	569	554	571	572	568	572	598	594	572	548
		Low	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F										
			CFM	1303	1301	1281	1291	1289	1291	1290	1295	1298	1253
		Н	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F	50.8	50.9	51.8	51.5	51.6	51.6	51.7	51.6	51.6	53.5
			CFM	1120	1127	1134	1130	1135	1138	1132	1143	1107	1112
		Mid-H	Temp Rise-1st stage °F	39	38	38.1	38.3	38.2	38.2	38.5	38.2	39.5	39
			Temp Rise-2nd stage °F	59.0	58.7	58.4	58.7	59	58.4	58.8	58.3	60.3	60.1
			CFM	908	894	896	902	896	894	864	891	935	880
80C	Bottom or Sides	Mid	Temp Rise-1st stage °F	47.3	48.1	48.0	47.8	48.2	48.4	50.1	48.7	46.5	49.5
			Temp Rise-2nd stage °F										
			CFM	818	819	825	800	813	803	831	838	791	802
		Mid-L	Temp Rise-1st stage °F	52	52.4	52.1	53.8	53.1	53.8	52.1	51.8	54.9	54.2
			Temp Rise-2nd stage °F										
			CFM	577	628	605	624	615	601	628	573	590	588
		Low	Temp Rise-1st stage °F										
		Temp Rise-2nd stage °F											

* A filter is required for each return air inlet. This table shows the airflow performance without a filter. To determine airflow performance with a filter, if a 3/4 inch (19 mm) washable media filter is used, assume an additional 0.1 in. WC available external static pressure.

** The manufacturer default fan settings are based on model

-- Indicates unstable operating conditions.

8 of 16

Air Deliv	r Delivery - CFM (Without Filter) * **												
Furnace	Return-air	Speed					Exter	rnal static p	ressure (in.	WC)			
size	inlet	Speed		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
			CFM	1752	1764	1768	1781	1774	1786	1762	1802	1792	1786
		Н	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F	47.5	47.3	47.3	47.0	47.3	47.0	47.7	46.8	47.2	47.4
			CFM	1512	1506	1536	1523	1514	1509	1529	1551	1565	1532
		Mid-H	Temp Rise-1st stage °F	38.6	38.8	38.1	38.5	38.8	39	38.6	38.1	37.9	38.8
		inia ii	Tomp Rise-2nd stage °E	54.8	55.1	54.1	54.6	55.1	55.3	54.7	54.0	53.6	54.8
		CEM	1254	1254	1262	1270	1257	1201	1200	1204	1/16	1202	
100C	Bottom or Sides	Ma		42.0	40	1002	1070	40.1	40.4	1000	40.0	41.7	1000
		IVIId		42.9	43	42.8	42.0	43.1	42.4	42.3	42.2	41.7	42.7
			Temp Rise-2nd stage °F	61.1	61.1	60.8	60.6	61.2	60.3	60.0	59.9	59.0	60.5
			CFM	1165	1165	1176	1164	1185	1190	1186	1205	1174	1199
		Mid-L	Temp Rise-1st stage °F	49.7	49.7	49.3	49.9	49.2	49.0	49.2	48.6	49.9	49.0
			Temp Rise-2nd stage °F										
			CFM	994	1025	1018	1024	1032	1026	1035	988	1005	1041
		Low	Temp Rise-1st stage "F	58.1	56.4	56.9	56.6	56.3	56.7	56.3	59	58.1	56.2
			Temp Rise-2nd stage *F		1026			1026		1060			
		ц	CFM	1926	1926	1931	1943	1936	1941	1960	1974	2015	2043
		п	Tomp Rise-2nd stage °F	/3.2	/3.3	/3.2	/3.1	/3.3	/3.3	12.9	12.7	12.0	/1.6
	Mid-H			17/6	1752	17/19	17/18	17/19	1763	42.5	42.7	179/	1791
		Mid-H	Temp Rise-1st stage °F										
		inia il	Temp Rise-2nd stage °F	47.5	47.4	47.6	47.7	47.7	47.4	47.3	47.2	46.9	47.0
			CEM	1488	1525	1525	1515	1528	1546	1501	1525	1546	1544
100D	Bottom or Sides	Mid	Temp Rise-1st stage °F	39	38.2	38.2	38.6	38.3	37.9	39.1	38.6	38.2	38.3
			Temp Rise-2nd stage °F	55.6	54.3	54.4	54.8	54.4	53.9	55.5	54.7	54.1	54.2
			CFM	1348	1374	1341	1383	1381	1385	1408	1404	1400	1401
		Mid-L	Temp Rise-1st stage °F	43.0	42.3	43.3	42.1	42.2	42.2	41.6	41.8	42.0	42.0
			Temp Rise-2nd stage °F	61.2	60.2	61.7	59.9	60.1	60	59.1	59.3	59.6	59.6
		Low	CFM	1163	1186	1164	1167	1174	1178	1182	1129	1163	1172
			Temp Rise-1st stage °F	49.7	48.8	49.8	49.7	49.5	49.4	49.3	51.7	50.3	50
			Temp Rise-2nd stage °F										
			CFM	1926	1933	1915	1923	1916	1929	1971	1941	2036	1998
		Н	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F	51.8	51.7	52.2	52.1	52.4	52.1	51.1	52.0	49.8	50.7
			CFM	1721	1747	1716	1749	1760	1768	1778	1783	1747	1788
		Mid-H	Temp Rise-1st stage °F										
			Temp Rise-2nd stage °F	57.8	57.0	58.1	57.1	56.8	56.6	56.4	56.3	57.5	56.4
			CFM	1489	1497	1503	1504	1507	1488	1496	1518	1519	1568
120D	Bottom or Sides	Mid	Temp Rise-1st stage °F	46.7	46.6	46.4	46.5	46.5	47.1	47.0	46.4	46.4	45.1
			Temp Rise-2nd stage "F	66.5	66.3	66.1	66.1	66.1	67.0	66.7	65.8	65.9	64
		Mich	CFM	1384	1360	1365	1384	1382	1383	13/9	1401 F0.1	1421	1414
		WID-L	Temp Rise-1st stage "F	50.2	51.1	51.0	50.4	50.6	50.6	50.8	50.1	49.5	49.9
			CEM	1165	1175	1160	1150	1150	1104	1100	1204	1201	1105
		L OW	Temp Rise-1st stage °E	59.5	59.0	59.8	60	60.1	58.9	58.9	58.1	58.4	59.2
		LOW	Temp Rise-2nd stage °F										

 A filter is required for each return air inlet. This table shows the airflow performance without a filter. To determine airflow performance with a filter, if a 3/4 inch (19 mm) washable media filter is used,

assume an additional 0.1 in. WC available external static pressure. ** The manufacturer default fan settings are based on model

-- Indicates unstable operating conditions.

9 of 16

Bosch Thermotechnology Corp. Londonderry, NH • Watertown, MA • Ft. Lauderdale, FL

Filters

Bosch does not supply filters or filter racks with furnace units. All filters must be field supplied according to the Manufacturer recommended high velocity filter sizes and specifications shown below.

Furnada ashinat width	Filte	Eiltor typo	
	Side return	Bottom return	Filter type
17-1/2	16X25	16X25	High Velocity (600 FPM)
21	16X25	20X25	High Velocity (600 FPM)
24.5	16X25	24X25	High Velocity (600 FPM)

Dimension in inches

High Altitude Derating

In high altitude applications, a standard derate for altitude from National Fuel Gas Code ANSI Z223.1 of 4% per 1000 feet above sea level must be taken. Refer to the most recent version of ANSI Z223.1 for correct gas orifice based on your specific application. The orifices must be selected using the specifications listed in the table below. The furnace derate is 4% for each 1,000 feet above sea level. For Canada applications, regulation requires 10% derating between 2000-4500 ft. When an appliance is installed at elevations above 4500 ft, the certified high altitude input rating shall be reduced at the rate of 4% for each additional 1000 ft.

The table below is based upon a heating value of approximately 1,000 Btu/ft³. In some areas the gas supplier may artificially derate the gas in an effort to compensate for the effects of altitude. If the gas is artificially derated, the appropriate orifice size must be determined based upon the BTU/ft³ content of the derated gas and the altitude. Refer to the latest version of NFPA54/ANSI Z223.1 and information provided by the gas supplier to determine the proper orifice size.

High Altitude Derate Orifice Size Chart (Natural and LP Gas*)												
		Elevation (Ft)		Elevat	on (Ft)	Elevati	Elevation (Ft)		Elevation (Ft)		Elevation (Ft)	
Input Rate KBTU/H	Number of burners	0-2000 2000-4000		-4000	4000-6000		6000-8000		8000-10000			
	NG**	LP	NG**	LP	NG**	LP	NG**	LP	NG**	LP		
60	3	45	55	47	56	48	57	49	58	50	59	
80	4	45	55	47	56	48	57	49	58	50	59	
100	5	45	55	47	56	48	57	49	58	50	59	
120	6	45	55	47	56	48	57	49	58	50	59	

* LP orifice based on 10 in. WC manifold pressure

** NG denotes natural gas

For Canada applications, regulation requires 10% derating between 2000-4500 ft. When an appliance is installed at elevations above 4500 ft, the certified high altitude input rating shall be reduced at the rate of 4% for each additional 1000 ft.

10 of 16

Bosch Thermotechnology Corp. reserves the right to make changes without notice due to continuing engineering and technological advances | BTC 772008301 A | 08.2024

Units installed with natural gas at altitudes up to 2000 ft. above sea level may be installed without any modifications. Units installed above 2000 ft. of elevation must use orifices as specified in the above table.

Venting

This Category IV, dual certified (AHRI and ETL) direct vent furnace is designed for residential applications. It may be installed without modification to the condensate system in a basement, garage, equipment room, alcove, attic or any other indoor location where all required clearance to combustibles and other restrictions are met*. The combustion air and the venting system must be installed in accordance with Section 5.3, Air for Combustion and Ventilation, of the National Fuel Gas Code Z223.1/NFPA 54 (latest edition), or Sections 7.2, 7.3 or 7.4 of CSA B149.1, National Gas and Propane Codes (latest edition) or applicable provisions of the local building code and these instructions.

This furnace requires a special venting system. This furnace is for use with schedule-40 PVC, PVC-DWV, CPVC, or ABS-DWV pipe, and **must not be vented in common with other gas-fired appliances**. Construction through which vent/air intake pipes may be installed is maximum 24 inches (610 mm), minimum 3/4 inches (19 mm) thickness (including roofing materials). Refer to Section 8 "Vent System" of the Installation, Operation, and Maintenance Manual, for installation instructions related to venting.

* The condensate from this unit is acidic, adhere to all local and national codes when draining condensate. If proper procedures are not followed, this may lead to property damage.

11 of 16

Equivalent Pipe Length

Maximum Equivale	Maximum Equivalent Pipe Length							
Model Input kBTU/H (kW)	Pipe Size - Inches (cm)	Maximum Equivalent Length - Feet (m)						
60 (17.6)	2 (5.1)	60 (18.2)						
60 (17.6)	3 (7.6)	90 (27.4)						
80 (23.4)	2 (5.1)	60 (18.2)						
80 (23.4)	3 (7.6)	90 (27.4)						
100 (29.3)	2 (5.1)	30 (9.1)						
100 (29.3)	3 (7.6)	90 (27.4)						
120 (35.1)	2 (5.1)	N/A						
120 (35.1)	3 (7.6)	90 (27.4)						

The following rules must also be followed:

- Long radius (sweep) elbows are recommended. Standard elbows may be used, but since they have a longer equivalent length, they will reduce the total length of pipe that will be allowed. Short radius (plumbing vent) elbows are not allowed. The standard dimensions of the acceptable elbows are shown below.
- 2. The maximum equivalent length listed in Table 5, "Maximum Equivalent Pipe Length" is for the vent piping and the air intake piping separately. For example, if the table allows 60 equivalent feet for a particular model, then the vent can have 60 equivalent feet of pipe, AND the combustion air intake can have another 60 equivalent feet of pipe.
- Three vent terminal elbows (two for the vent and one for the combustion air intake) are already accounted for and need not be included in the equivalent length calculation.
- 4. All combustion air and vent pipes and fittings must conform to American National Standards Institute (ANSI) and American Society for Testing and Materials (ASTM) standards, D1785 (Schedule 40 PVC), F441 (Schedule 40 CPVC), D2665 (PVC-DWV), F891 (PVC-DWV Cellular Core), D2661 (ABS-DWV) or D1527 (Schedule 40 ABS). Pipe cement and primer must conform to ASTM Standard D2564 (PVC), F493 (CPVC) or D2235 (ABS). If ABS pipe is to be used, any joint where ABS pipe is joined to PVC pipe must be glued with cement that is approved for use with BOTH materials. As an alternate, use all purpose cement, to bond ABS, PVC, or CPVC pipe when using fittings and pipe made of the same materials. Metallic materials must not be used for venting or air intake.
- 5. If a flexible connector is used in the vent system, it must be made of a material that is resistant to acidic exposure and to at least 225° F temperature. Flexible connectors are also allowed in the combustion air pipe.
- 6. All models are supplied with 2" vent connections. When the pipe must be increased to 3" diameter, the transition from 2" to 3" must be done as close to the furnace as possible. For upflow models, the transition from 2" to 3" should be done immediately above the furnace. For downflow or horizontal models, the transition from 2" to 3" pipe should be done immediately after exiting the furnace.
- In Canada, vents shall be certified to ULC S636, Standard for Type BH Gas Venting Systems. IPEX System 636 PVC is certified to this standard.
- In Canada, the first three feet (900 mm) of the vent must be readily accessible for inspection.
- 9. Minimum vent length for all models is 5 feet.

12 of 16

i

The equivalent length of the vent system is the total length of straight pipe PLUS the equivalent length of all of the elbows.

Elbow Dimensions					
Elbow	"A" Dimension				
2" Standard	2-5/16"				
3" Standard	3-1/16"				
2" Sweep	3-1/4"				
3" Sweep	4-1/16"				

Equivalent Length of Fittings	Equivalent Length of Fittings						
Fitting	Equivalent Length						
2" 90° sweep elbow	5 feet of 2" pipe						
2" 45° sweep elbow	2-1/2 feet of 2" pipe						
2" 90° standard elbow	10 feet of 2" pipe						
2" 45° standard elbow	5 feet of 2" pipe						
3" 90° sweep elbow	5 feet of 3" pipe						
3" 45° sweep elbow	2-1/2 feet of 3" pipe						
3" 90° standard elbow	10 feet of 3" pipe						
3" 45° standard elbow	5 feet of 3" pipe						
2" corrugated connector	10 feet of 2" pipe						
3" corrugated connector	10 feet of 3" pipe						

Combustion Air Intake & Vent Connection Size (All Models)						
Connection Type	Size - Inches (cm)					
Intake Pipe	2" (5.1)					
Vent Pipe	2" (5.1)					

i

Furnace vent pipe connections are sized for 2" (5.1 cm) pipe. Any pipe size change must be made outside the furnace cabinet in a vertical pipe section to allow proper drainage of condensate. An offset using two 45° (degree) elbows will be required for plenum clearance when the vent is increased to 3" (7.6 cm).

Example:

An 80,000 BTUH furnace requires 32 feet of pipe and four 90° elbows. Using 2" pipe and standard elbows, the total equivalent length will be:

32 feet of 2" pipe =	32 equivalent feet
4 - 90° standard 2" elbows =	(4x10) = 40 equivalent feet
Total =	72 equivalent feet of 2" pipe

This exceeds the 60 foot maximum equivalent length of 2" pipe allowed for that model and is thus not acceptable.

By using sweep elbows, the total equivalent length will be:

32 feet of 2" pipe =	32 equivalent feet
4 - 90° sweep 3" elbows =	(4x5) = 20 equivalent feet
Total =	52 equivalent feet of 2" pipe

This is less than the 60 foot maximum equivalent length of 2" pipe allowed for that model and is thus acceptable.

Alternatively, using 3" pipe and standard elbows, the total equivalent length will be:

32 feet of 3" pipe =	32 equivalent feet
4 - 90° standard 2" elbows =	(4x10))= 40 equivalent feet
Total =	72 equivalent feet of 3" pipe

This is less than the 90 foot maximum equivalent length of 3" pipe allowed for that model and is thus acceptable.

Required Clearance to Combustibles

This furnace may be installed on combustible flooring in an alcove or closet at minimum clearance as indicated below.

- * When the unit is installed in the horizontal orientation, there must be 7" clearance in order to install the externally mounted drain trap.
- 24 inches is required for service and maintenance.

Horizontal installation in attic or crawl space

Indicates supply or return sides when furnace is in the horizontal position. Line contact only permissible between lines formed by intersections of the side and back of the furnace cabinet and building joists, studs or frame.

Horizontal applications require a solid, supportive structure for installation (refer to the Installation, Operation & Maintenance Manual Section 7.2 "Horizontal Installation").

Bosch Thermotechnology Corp. reserves the right to make changes without notice due to continuing engineering and technological advances | BTC 772008301 A | 08.2024

BOSCH

Electrical & Controls

Ratings & Physical / Electrical Data												
lnı	out	Ou	tput	Nominal Airflow	MAX. Unit	AFUE	Air Terr	ıp. Rise	Max.Over-Current Protection	Min. Wire Size (AWG)	Max. O Te	utlet Air mp
MBH	kW	MBH	kW	CFM	Amps		°F	° C	Amps	@ 75 ft	°F	° C
60B3	17.6	57	16.4	1200	8	96	30-60	17-33	15	14	160	71
80B3	23.4	76	22.3	1200	8	96	35-65	19-36	15	14	165	74
80C4	23.4	76	22.3	1600	7.8	96	35-65	19-36	15	14	165	74
100C5	29.3	95	27.8	2000	11.5	96	35-65	19-36	20	14	165	74
100D5	29.3	95	27.8	2000	10.5	96	35-65	19-36	20	14	165	74
120D5	35.2	107	33.7	2000	10.5	95	40-70	22-39	20	14	170	77

Annual Fuel Utilization Efficiency (AFUE) numbers are determined in accordance with DOE Test procedures.

National Electrical Code (NFPA-70-latest edition) and all local codes.

The furnace shall be installed so that the electrical components are protected from water.

Sequence of Operations

1. Heating mode

In a typical system, a call for first stage heat is initiated by closing the W1 thermostat contacts. The inducer blower is energized at high speed and the control waits for the low pressure switch contacts to close. The humidifier (optional) is also energized at this time. Once the low pressure switch contacts close, a 15-second pre-purge is initiated. Then the inducer changes to low speed and the 120V ignitor is powered. At the end of the ignitor warm-up time, the first stage of the two-stage manifold gas valve is energized (low fire). Flame must be detected within 4 seconds. If flame is detected, the 45-second HEAT delay-to-fan-on period begins. After the delay-to-fan-on period ends, the control will energize the circulator fan at low heat speed. The electronic air cleaner (optional) will also energize at this time. For a two-stage thermostat, a call for second stage heat (W1 and W2) after a call for first stage heat will energize the inducer at high speed and the circulator at high heat speed. The second stage pressure switch contacts will close and energize the second stage gas valve (high fire). For a single-stage thermostat, when a call for heat occurs (W1), a 10, 20 minute or auto mode heat staging timer will be activated (timing is selectable with option switches S1-1 and S1-2 positions). Following this delay, the second stage heat is energized as above.

When the second stage of the thermostat is satisfied, the inducer motor is reduced to low speed and the second stage gas valve is de-energized. On the control, the circulator will remain at high heat speed for 30 seconds following the opening of the second stage gas valve and then is reduced to low heat speed. When the first stage of the thermostat is satisfied, the first stage gas valve is

de-energized and the HEAT delay-to-fan-off begins timing. The inducer will postpurge for an additional 15 seconds, then the inducer and humidifier

will turn off. Upon completion of the HEAT delay-to-fan-off period, the circulator is turned off. The electronic air cleaner on the control is also deenergized at this time.

If flame is not detected during the trial-for-ignition period or if the flame is detected/sensed and then lost before completion of 10 seconds of establishment, the gas valve is de-energized, the ignitor is turned off, and the control goes into the "retry" sequence. The "retry" sequence provides a 60-second wait with the inducer interpurge following an unsuccessful ignition attempt (flame not detected). After this wait, the ignition attempt is restarted. Two retries will be attempted before the control goes into system lockout. If flame is established for more than 10 seconds after ignition, the controller will clear the ignition attempt (or retry) counter. If flame is lost after 10 seconds, the control will restart the ignition sequence. A momentary loss of gas supply, flame blowout, or a shorted or open condition in the flame probe circuit will be sensed within 2 seconds. The gas valve will de-energize and the control will restart the ignition sequence. Recycles will begin and the burner will operate normally if the gas supply returns, or the fault condition is corrected, before the last ignition attempt. Otherwise, the control will go into system lockout. If the control has gone into system lockout, it may be possible to reset the control by a momentary power interruption of 10 seconds or longer.

Timing specifications

Pre-purge TimeThe period of time intended to allow for the dissipation of any unburned gas or residual products of combustion at the beginning of a furnace operating cycle prior to initiating ignition15 secondIgnitor Warm-up TimeThe length of time allowed for the ingiter to heat up prior to the initiation of gas flow17 secondTrial for igni- tion Period (TFI)The period of time between initiation of gas flow and the action to shut off the gas flow in the event of failure to establish proof of the supervised ignition source or the supervised main burner flame4 secondIgnition Activation Period (IAP)The period of time between energizing the main gas valve and deactivation of the igniter prior to the end of TFI3 secondBottiesThe additional attempts within the same thermostat cycle for ignition when the3 second	
Ignitor Warm-up TimeThe length of time allowed for the ingiter to heat up prior to the initiation of gas flow17 secondTrial for igni- tion Period (TFI)The period of time between initiation of gas flow and the action to shut off the gas flow in the event of failure to establish proof of the supervised ignition source or the supervised main burner flame4 secondIgnition Activation Period (IAP)The period of time between energizing the main gas valve and deactivation of the igniter prior to the end of TFI3 secondBottiesThe additional attempts within the same thermostat cycle for ignition when the2 time	onds
Trial for igni- tion Period (TFI)The period of time between initiation of gas flow and the action to shut off the gas flow in the event of failure to establish proof of the supervised ignition source or the supervised main burner flame4 secoIgnition Activation Period (IAP)The period of time between energizing the main gas valve and deactivation of the igniter prior to the end of TFI3 secoBottiesThe additional attempts within the same thermostat cycle for ignition when the3 sime	onds
Ignition Activation Period (IAP)The period of time between energizing the main gas valve and deactivation of the igniter prior to the end of TFI3 secoBetriesThe additional attempts within the same thermostat cycle for ignition when the the same the same<	onds
The additional attempts within the same thermostat cycle for ignition when the	onds
supervised main burner flame is not proven within the first TFI	es
Valve Sequence period Valve sequence period = 4 seconds (TFI) x (1 initial try + 2 retries)	onds
Inter-purge The period of time intended to allow for the dissipation of any unburned gas or residual products of combustion between the failed TFI and the retry period	onds
Post-purge Time Time Time Time Time Time The period of time intended to allow for the dissipation of any unburned gas or residual products of combustion at the end of a furnace burner operating cycle. Post-purge begins at the loss of flame sense	onds
Lock-Out Time ANSI standard rated module timing 300 sec	conds
Heat Delay- To-Fan-On The period of time between proof of the supervised main burner flame and the activation of the blower motor at heating speed 30 seco	onds
Heat Delay- To-Fan-Off*The period of time between the loss of a call for heat and the deactivation of the blower motor at heating speed*90/120/1 second	50/180 nds
Cool Delay- To-Fan-OnThe period of time after a thermostat demand for cool before energizing the circulator blower motor at cooling speed1 second	ond
Cool Delay- To-Fan-OffThe period of time between the loss of a call of cool and the deactivation of the blower motor at cooling speed*60/90/12 second	20/150 nds
Automatic After one (1) hour of internal or external lockout, the control will automatically reset itself and go into an auto restart purge for 60 seconds 60 minute	utes

Optional Switch Positions

W2 Delay		
DIP Sv	NOMINAL	
SW1-1	SW1-2	(MINUTES)
OFF	OFF	OFF*
ON	OFF	10
OFF	ON	AUTO
ON	ON	20

* The factory default settings

Heat Off Delay				
DIP Sv	NOMINAL			
SW1-3	SW1-4	(SECONDS)		
OFF	OFF	90*		
ON	OFF	120		
OFF	ON	150		
ON	ON	180		

* The factory default settings

Cool Off Delay				
DIP Sv	NOMINAL			
SW2-3	SW2-4	(SECONDS)		
OFF	OFF	60*		
ON	OFF	90		
OFF	ON	120		
ON	ON	150		

* The factory default settings

ſ	•	٦
	1	
L		

When using a single stage thermostat, second stage delay is based on the setting of switch S1-1& S1-2 dip switches.

16 of 16

Bosch Thermotechnology Corp. reserves the right to make changes without notice due to continuing engineering and technological advances | BTC 772008301 A | 08.2024