Installation Procedures for ABS, PVC and CPVC Piping Systems

With our reliable ABS, PVC and CPVC TrueFit systems, Charlotte Pipe and Foundry is doing more than any other supplier to help contractors work more efficiently and productively.

The following information contains suggested installation and testing procedures. These instructions, however, do not encompass all of the requirements for the design or installation of a piping system.

- Systems should be installed in a good and workmanlike manner consistent with normal industry standards and in conformance with all applicable plumbing, fire and building code requirements.
- Pipe and fitting systems should be used for their intended purpose as defined by local plumbing and building codes and the applicable ASTM standard.
- Follow manufacturers' instructions for all products.

Failure to follow **safety precautions** may result in misapplication or improper installation and testing which can cause severe personal injury and / or property damage.

Do not use for SPUD GUNS, FLAMETHROWERS, or COMPRESSED AIR GUNS. May result in property damage, injury or death. Use only for fluid handling / plumbing applications.

NOTICE

Using an external heat source to bend PVC, CPVC, or ABS may result in structural damage to pipe and fittings.
Always make changes in direction with fittings.

Joining ABS, PVC and CPVC Pipe and Fitting Systems

The tools, cleaner, primer, solvent cement and techniques required to properly join plastic piping systems are dependant upon application, pipe diameter and weather conditions. Charlotte Pipe and Foundry recommends that installers be trained and pass the ASME B 31.3 Bonder Qualification Test.

Please see the Special Considerations section of this manual for additional information.

This installation manual provides direction for the installation of the following piping systems:

- 1/2" 2" FlowGuard Gold[®] and ReUze[®] CTS CPVC pipe and fitting systems with one step solvent cement.
- 1/2" 4" Iron Pipe Size ABS, PVC and CPVC pipe and fitting systems with two step solvent cement.
- 6" Iron Pipe Size and larger ABS, PVC and CPVC pipe and fitting systems with two step solvent cement.

FlowGuard Gold[®] and ReUze[®] CTS CPVC Pipe and Fittings Systems

- 1. Cut Pipe
- Cut pipe square with the axis. All joints are sealed at the base of the fitting hub. An angled cut may result in joint failure.

 Acceptable tools include ratchet type pipe cutter,

miter saw or wheel type pipe cutter. Wheel type pipe cutters must employ a blade designed to cut plastic pipe. Ratchet cutters should be sharpened regularly.

- If any indication of damage or cracking is evident at the tube end, cut off at least 2" of pipe beyond any visible cracks.
- 2. Remove Burrs and Bevel
- Remove all pipe burrs from inside and outside diameter of pipe with a knife edge, file or de-burring tool.
- Chamfer (bevel) the end of the pipe $10^{\circ} - 15^{\circ}$.

CHARLOTTE PIPE AND FOUNDRY COMPANY

3. Clean and Dry Pipe and Fittings

 Remove surface dirt, grease or moisture with a clean dry cloth.

4. Dry Fit

 With light pressure, pipe should go one half to one third of the way into the fitting hub. Pipe and fittings that are too tight or too loose should not be used.

5. Applicator

- Use an applicator that is one half the size of the pipe's diameter.
- Too large an applicator will force excess primer or cement into the inside of the fitting. Too small an applicator will not apply sufficient cement.

6. Coat Surface with Cement

- Stir or shake the cement prior to use.
- Apply a full even layer of cement to the pipe surface to a point ¹/₂" beyond the hub

depth. Aggressively work the cement into the surface.

Without re-dipping the applicator in the cement, apply a thin layer of cement to the fitting socket aggressively working it into the surface.

- Do not allow cement to puddle or accumulate inside the system.
- Solvent cement should conform to ASTM F 493 as shown in the accompanying table. All purpose cement is not recommended.
- Primer is not required for FlowGuard Gold[®] one-step cement, but may be used. Check local code requirements.

7. Join Pipe and Fittings

 Assemble pipe and fittings quickly while cement is fluid. If cement has hardened, cut pipe, dispose of fitting and start over.

- Insert pipe into fitting hub giving a quarter turn ensuring an even distribution of cement within the joint.
- Once the pipe contacts the socket bottom hold pipe and fitting together until the pipe does not back out.
- Align all piping system components properly without strain. Do not bend or pull pipe into position after being solvent welded.

- See table for recommended set and cure times.
- Remove excess cement from the exterior. A properly made joint will show a continuous bead of cement around the perimeter. If voids appear sufficient cement may not have been applied and joint failure may result.

$1/2^{\prime\prime}-4^{\prime\prime}$ Iron Pipe Size ABS, PVC and CPVC Pipe and Fitting Systems

1. Cut Pipe

 Cut pipe square with the axis. All joints are sealed at the base of the fitting hub. An angled cut may result in joint failure.

 Acceptable tools include ratchet type pipe cutter,

> miter saw, reciprocating saw, mechanical cut off saw with carbide tipped blade or wheel type pipe cutter. Wheel type pipe cutters must employ a blade designed to cut plastic pipe. Ratchet cutters should be sharpened regularly.

• If any indication of damage or cracking is evident at the pipe end, cut off at least 2" of pipe beyond any visible cracks.

2. Remove Burrs and Bevel

 Remove all pipe burrs from inside and outside diameter of pipe with a knife edge, file or de-burring tool.

Chamfer (bevel) the end of the pipe $10^{\circ} - 15^{\circ}$.

- 3. Clean and Dry Pipe and Fittings
 - Remove surface dirt, grease or moisture with a clean dry cloth.

4. Dry Fit

With light pressure, pipe should go one half to one third of the way into the fitting hub. Pipe and fittings that are too tight or too loose should not be used.

5. Applicator

- Use an applicator that is one half the size of the pipe's diameter. Daubers, natural bristle brushes or swabs are recommended. Rollers are not recommended.
- Too large an applicator will force excess primer or cement into the inside of the fitting. Too small an applicator will not apply sufficient cement.

Plastics Technical Manual

CHARLOTTE PIPE AND FOUNDRY COMPANY®

6. Coat Surface with Primer

 Apply primer to the fitting socket aggressively working it into the surface.

 Apply a second coat of primer to the fitting socket aggressively working it into the surface.

- TE PIPE TA I PC TE I SH & KIN D-265 KAN S. PC TR ively into
- More applications of primer may be required on hard surfaces or cold weather conditions.
- Once the surface is primed remove all puddles of excess primer from the fitting socket.
- Primer should conform to ASTM F 656.
- The use of primer for ABS is not recommended. Check local code requirements.

7. Coat Surface with Cement

- Cement must be applied while primer is wet.
- Stir or shake the cement prior to use.
- Apply a full even layer of cement to the pipe surface to a point ¹/₂" beyond the hub depth. Aggressively work the cement into the surface.

- Without re-dipping the applicator in the cement, apply a medium layer of cement to the fitting socket aggressively working it into the surface. On bell end pipe do not coat beyond the socket depth.
- Apply a second full coat of cement to the pipe surface aggressively working it in.

- 55 NS
- Do not allow cement to puddle or accumulate inside the system.
- Solvent cement should conform to the appropriate ASTM standard for the piping system as shown in the accompanying table. All purpose cement is not recommended

8. Join Pipe and Fittings

 Assemble pipe and fittings quickly while cement is fluid. If cement has hardened, cut pipe, dispose of fitting and start over.

Insert pipe into

the fitting hub

giving a quarter turn as the pipe is being inserted, ensuring an even distribution of the cement within the joint. Do not quarter turn the pipe after contact with socket bottom.

- Once the pipe contacts the socket bottom hold pipe and fitting together until the pipe does not back out.
- See table for recommended set and cure times.
- Remove excess cement from the exterior. A properly made joint will show a continuous bead of cement around the perimeter. If voids appear sufficient cement may not have been applied and joint failure may result.

• Align all piping system components properly without strain. Do not bend or pull pipe into position after being solvent welded.

WARNING

Primers and cements are extremely flammable and may be explosive. Do not store or use near open flame or elevated temperatures, which may result in injury or death.

- Solvent fumes created during the joining process are heavier than air and may be trapped in newly installed piping systems.
- Ignition of the solvent vapors caused by spark or flame may result in injury or death from explosion or fire.
- Read and obey all manufacturers' warnings and any instructions pertaining to primers and cements.
- Provide adequate ventilation to reduce fire hazard and to minimize inhalation of solvent vapors when working with cements, primers and new piping systems.

6" and Larger Iron Pipe Size ABS, PVC and CPVC Pipe and Fitting Systems

Joining larger diameter piping systems, particularly for pressure applications, requires a higher degree of skill. Proper installation technique is critical. Close attention to the steps below will help professional mechanics to complete successful installations.

1. Cut Pipe

Cut pipe square with the axis. All joints are sealed at the base of the fitting hub. An angled cut may result in joint failure.

Acceptable tools include reciprocating saw, me-

chanical cut off saw with carbide tipped blade or other appropriate tool.

If any indication of damage or cracking is evident at the (tube / pipe) end, cut off at least 2" of pipe beyond any visible cracks.

2. Remove Burrs and Bevel

- Remove all pipe burrs from inside and outside diameter of pipe with a de-burring tool.
- Chamfer (bevel) the end of the pipe 10° - 15°. Powered and manual chamfering tools are available.
- 3. Clean and Dry Pipe and Fittings
 - Remove surface dirt, grease or moisture with a clean dry cloth.

CHARLOTTE PIPE AND FOUNDRY COMPANY®

4. Mark Insertion Depth

 Measure the fitting hub depth. Using a pipe wrap as a straight edge mark the insertion depth plus 2" in a heavy continuous line around the circumference of the pipe.

8. Coat Surface with Primer

 Apply primer to the fitting socket aggressively working it into the surface.

 Apply primer to the pipe surface to a point ¹/₂" beyond the hub depth. Aggressively work the primer into the surface.

- Apply a second coat of primer to the fitting socket aggressively working it into the surface.
- More applications of primer may be required on hard surfaces or cold weather conditions.

NOTICE: Pipe diameters 6" and larger must be installed using IPS P-70 or Oatey Industrial Grade primers.

 Provide adequate ventilation to reduce fire hazard and to minimize inhalation of solvent vapors when working with cements, primers and new piping systems.

5. Dry Fit

With light pressure, pipe should go one half to one third of the way into the fitting hub. Pipe and fittings that are too tight or too loose should not be used.

6. Applicator

 Use an applicator that is one half the size of the pipe's diameter. Use of an appropriately sized applicator will ensure that adequate cement is applied. Natural bristle brushes or swabs are recom-

mended. Rollers are not recommended.

• Too small an applicator will not apply sufficient cement.

PIPE

7. Crew Size

• Working rapidly, especially in adverse weather conditions, will improve installations. For 6" to 8" diameters a crew size of 2 to 3 mechanics is required. For 10" pipe diameters and larger a crew of 3 to 4 mechanics may be required.

- Once the surface is primed remove all puddles of excess primer from the fitting socket.
- The use of primer for ABS is not recommended. Check local code requirements.

9. Coat Surface with Cement

- Cement must be applied while primer is wet. It is ideal if one mechanic applies the primer while a second immediately applies the cement.
- Stir or shake the cement prior to use.
- Apply a full even layer of cement to the pipe surface to a point ½" beyond the hub depth. Aggressively work the cement into the surface.

Apply a medium layer of cement to the fitting socket aggressively working it into the surface. On bell end pipe do not coat beyond the socket depth.

- Apply a second full coat of cement to the pipe surface aggressively working it in.
- Do not allow cement to puddle or accumulate inside the system.
 - Solvent cement should conform to the appropriate ASTM standard for the piping system as shown in the accompanying table. Heavy bodied cement is recommended. All purpose cement is not recommended

NOTICE: CPVC Schedule 80 systems must be installed using IPS 714 or Oatey CPVC Heavy Duty Orange solvent cements.

10. Join Pipe and Fittings

- Assemble pipe and fittings quickly while cement is fluid. If cement has hardened, cut pipe, dispose of fitting and start over.
- It is very important that the pipe is fully inserted to the fitting stop at the bottom of the fitting. Large diameter pipe is heavy and can develop significant resistance during insertion. The use of a pull-

ing tool designed for plastic piping systems is recommended.

A WARNING

Primers and cements are extremely flammable and may be explosive. Do not store or use near open flame or elevated temperatures, which may result in injury or death.

- Solvent fumes created during the joining process are heavier than air and may be trapped in newly installed piping systems.
- Ignition of the solvent vapors caused by spark or flame may result in injury or death from explosion or fire.
- Read and obey all manufacturers' warnings and any instructions pertaining to primers and cements.
- Provide adequate ventilation to reduce fire hazard and to minimize inhalation of solvent vapors when working with cements, primers and new piping systems.

CAUTION

Failure to follow proper installation practices, procedures, or techniques may result in personal injury, system failure or property damage.

- Use a solvent cement / primer applicator that is 1/2 the size of the pipe's diameter. Too large an applicator will result in excess cement inside the fitting. Too small an applicator will not apply sufficient cement.
- · Cut pipe square.
- Do not use dull or broken cutting tool blades when cutting pipe.
- Do not test until recommended cure times are met.
- Align all piping system components properly without strain. Do not bend or pull pipe into position after being solvent welded.

 Measure to verify that the pipe has been inserted to within 2" of the insertion line.

• To ensure joint integrity, once insertion is complete, the pulling tool can be used to hold the joint in place during set time and also to ensure that the pipe does not back out.

- See table for recommended set and cure times.
- Remove excess cement from the exterior. A properly made joint will show a continuous bead of cement around the perimeter. If voids appear sufficient, cement may not have been applied and joint failure may result.
- Align all piping system components properly without strain.
 Do not bend or pull pipe into position after being solvent welded.

Solvent Cements

Pipe and Fitting System	Diameter (in.)	Solvent Cement Standard	Cement Color (common usage, check local code)	Description	Primer (common usage, check local code)
				Regular or	Not
ABS DWV	11/2 - 6	ASTM D 2235	Black	Medium-Bodied	Recommended
FlowGuard Gold [®] and					
ReUze [®] CTS CPVC	1/2 - 2	ASTM F 493	Yellow	Regular-Bodied	Optional
			IPS 714 or Oatey CPVC		IPS P-70 or Oatey
CPVC Sch. 80	1/2 - 2	ASTM F 493	Heavy Duty Orange	Heavy-Bodied	Industrial Grade
			IPS 714 or Oatey CPVC		IPS P-70 or Oatey
CPVC Sch. 80	21/2 - 8	ASTM F 493	Heavy Duty Orange	Heavy-Bodied	Industrial Grade
			ChemDrain Mustard		6" and larger: IPS P-70 or
CPVC Sch. 40 ChemDrain	11/4 - 8	ASTM F 493	Yellow (Required)	Heavy-Bodied	Oatey Industrial Grade required
				Regular or	Required
PVC DWV or Sch. 40 Pressure	1⁄2 - 4	ASTM D 2564	Clear	Medium-Bodied	ASTM F 656
				Medium or	Required
PVC DWV or Sch. 40 Pressure	6 - 16	ASTM D 2564	Clear or Grey	Heavy-Bodied	ASTM F 656
				Medium or	Required
PVC Sch. 80	1/4 - 2	ASTM D 2564	Grey	Heavy-Bodied	ASTM F 656
					IPS P-70 or Oatey
PVC Sch. 80	21/2 - 16	ASTM D 2564	Grey	Heavy-Bodied	Industrial Grade

NOTICE: Aerosol or spray-on type primers/solvent cements are not recommended. The practice of aggressively scouring the pipe and fittings with both primer and solvent cement is an integral part of the joining process. Not working the primer or solvent cement into the pipe or fitting could cause potential system failure or property damage.

Primers and cements are extremely flammable and may be explosive. Do not store or use near open flame or elevated temperatures, which may result in injury or death.

- Solvent fumes created during the joining process are heavier than air and may be trapped in newly installed piping systems.
- Ignition of the solvent vapors caused by spark or flame may result in injury or death from explosion or fire.
- Read and obey all manufacturers' warnings and any instructions pertaining to primers and cements.
- Provide adequate ventilation to reduce fire hazard and to minimize inhalation of solvent vapors when working with cements, primers and new piping systems.

Applicator Types

Nominal Pipe		Applicator Type	
Size (in.)	Dauber	Brush Width (in.)	Swab Length (in.)
1/4	А	1/2	NR
3/8	А	1/2	NR
1/2	А	1/2	NR
3/4	А	1	NR
1	А	1	NR
11/4	А	1	NR
11/2	А	$1 - 1^{1/2}$	NR
2	А	$1 - 1^{1/2}$	NR
21/2	NR	11/2 - 2	NR
3	NR	1½ - 2½	NR
4	NR	2 - 3	3
6	NR	3 - 5	3
8	NR	4 - 6	7
10	NR	6 - 8	7
12	NR	6 - 8	7
14	NR	7 - 8	7
16	NR	8+	8
$\Lambda = \Lambda ccentable$		-	Pecommended

A = Acceptable

NOTICE: Rollers are not recommended.

NR = Not Recommended

CHARLOTTE PIPE AND FOUNDRY COMPANY

Joint Curing

The joint should not be disturbed until it has initially set. The chart below shows the recommended initial set and cure times for ABS, PVC and CPVC in iron pipe size diameters as well as for FlowGuard Gold[®] and ReUze[®] CTS CPVC.

Temperature Range	Diameter ½" to 1¼"	Diameter 1½" to 3"	Diameter 4'' to 8''	Diameter 10" to 16"	
60° - 100° F	15 min	30 min	l hr	2 hr	
40° - 60° F	l hr	2 hr	4 hr	8 hr	
0° - 40° F	3 hr	6 hr	12 hr	24 hr	

Recommended Initial Set Times

A joint should not be pressure tested until it has cured. The exact curing time varies with temperature, humidity, and pipe size. The presence of hot water extends the cure time required for pressure testing. Pressurization prior to joint curing may result in system failure.

Recommended Curing Time Before Pressure Testing

RELATIVE HUMIDITY 60% or Less*	CURE TIME Diameter ½" to 1¼"		CURE TIME Diameter 1½'' to 3''			RE TIME er 4" to 8"	CURE TIME Diameter 10'' to 16''	
Temperature Range During Assembly and Cure Periods	Up to 180 psi	Above 180 to 370 psi	Up to 180 psi	Above 180 to 315 psi	Up to 180 psi	Above 180 to 315 psi	Up to 100 psi	
60° - 100° F	l hr	6 hr	2 hr	12 hr	6 hr	24 hr	24 hr	
40° - 60° F	2 hr	12 hr	4 hr	24 hr	12 hr	48 hr	48 hr	
0° - 40° F	8 hr	48 hr	16 hr	96 hr	48 hr	8 days	8 days	

*For relative humidity above 60%, allow 50% more cure time.

The above data are based on laboratory tests and are intended as guidelines.

For more specific information, contact should be made with the cement manufacturer.

*Average number of joints per Quart for Cement and Primer (Source: IPS Weld-on)

Pipe Diameter	1/2″	3/4″	1″	11/2″	2″	3″	4″	6″	8″	10″	12″	15″	18″
Number of Joints	300	200	125	90	60	40	30	10	5	2 to 3	1 to 2	³ /4	1/2

For Primer: double the number of joints shown for cement.

* These figures are estimates based on IPS Weld-on laboratory tests.

Due to many variables in the field, these figures should be used as a general guide only.

Plastics Technical Manual

Flanges

For systems where dismantling is required, flanging is a convenient joining method. It is also an easy way to join plastic and metallic systems.

Installation

 Join the flange to the pipe using the procedures shown in the solvent cementing or threading sections.

2. Use a full faced

elastomeric gasket which is resistant to the chemicals being conveyed in the piping system. A gasket $\frac{1}{6}$ " thick with a Durometer, scale "A", hardness of 55 -80 is normally satisfactory.

3. Align the flanges and gasket by inserting all of the bolts through the mating flange bolt holes. Be sure to use properly sized flat washers under all bolt heads and nuts.

NOTICE

- Exceeding recommended flange bolt torque may result in component damage, system failure and property damage.
- Use the proper bolt tightening sequence as marked on the flange.
- Make sure the system is in proper alignment.
- Flanges may not be used to draw piping assemblies together.
- Flat washers must be used under every nut and bolt head.
- Ensure that the mating surfaces are in direct contact. A gap between the flange face and mating surface may result in flange failure.

4. Sequentially tighten the bolts corresponding to the patterns shown below. New bolts and nuts should be used for proper torque.

- 5. Ensure that the mating surfaces are in direct contact. A gap between the flange face and mating surface may result in flange failure. Do not connect to lug type appurtenances without additional flange support.
- Use a torque wrench to tighten the bolts to the torque values shown below.
- Use of thread lubricant will ensure proper torque. Confirm that the thread lubricant is chemically compatible with pipe and fittings.

Recommended Torque

Pipe Size In Inches	No. Bolt Holes	Bolt Diameter	Recommended Torque ft/lbs
1/2	4	1/2	10 - 15
3/4	4	1/2	10 - 15
1	4	1/2	10 - 15
11/4	4	1/2	10 - 15
11/2	4	1/2	10 - 15
2	4	5/8	20 - 30
2 ¹ / ₂	4	5/8	20 - 30
3	4	5/8	20 - 30
4	8	5/8	20 - 30
6	8	3/4	33 - 50
8	8	3/4	33 - 50
10	12	7/8	53 - 75
12	12	7/8	53 - 75

Note: Flanges meet the bolt-pattern requirements of ANSI / ASME B 16.5

(8)

FLANGE BOLT TIGHTENING SEQUENCE

Pressure Rating of PVC and CPVC Flanges at Elevated Temperatures

	Operating erature °F		70 (23)	80 (27)	90 (32)	100 (38)	110 (43)	120 (49)	130 (54)	140 (60)	150 (66)	160 (71)	170 (77)	180 (82)	200 (93)
Pressure	¹ / ₂ " - 6"	PVC	150	132	113	93	75	60	45	33	NR	NR	NR	NR	NR
Rating (psi)	72 -0	CPVC	150	144	137	123	111	98	87	75	68	60	NR	NR	NR

NR = Not Recommended

Threaded Joints and Threading of PVC and CPVC Pipe

Charlotte Pipe generally recommends socket (solvent cement) jointing for thermoplastic piping systems. Threaded systems may be used for smaller-size, low-pressure plastic systems, if desired. Transitions to metal or other dissimilar materials may be completed using molded male or female threaded adapters or cut threads on Schedule 80 pipe or flanges.

Only Schedule 80 PVC and Schedule 80 CPVC pipe can be threaded. Schedule 40 or SDR pipe cannot be threaded; molded threaded adapters must be used on those systems.

The pressure rating of molded or cut threads must be derated by an additional 50% beyond the pressure rating for pipe and fittings. See pressure/temperature derating information in this technical manual for systems exposed to operating conditions above $73^{\circ}F$.

NOTICE

Do not exceed the maximum working pressure of any system components including pipe, fittings, valves, molded or cut threads, unions, mechanical coupling or flanges.

- The pressure rating of all components must be reduced at temperatures above 73 degrees F. Refer to de-rating table in this manual.
- Exceeding the maximum working temperature or pressure of the system may result in system failure and property damage.

Pressure Rating for PVC Schedule 80 Unions

	Uni	ons
Size	Socket Type	Threaded
	Max Working Pressure @ 73°F	Max Working Pressure @ 73°F
1/2″	235 psi	235 psi
3/4″	235 psi	235 psi
1″	235 psi	235 psi
11/4″	235 psi	235 psi
11/2"	235 psi	235 psi
2″	235 psi	200 psi
3″	235 psi	185 psi

Maximum Pressure Rating for PVC and CPVC Piping Systems With Threaded Fittings or Threaded Pipe in Pressure Applications

				I	Pressure	Rating (PSI) @			
Size	Туре	73 °F	80 °F	90 °F	100 °F	110 °F	120 °F	130 °F	140 °F	150 °F
- 10 //	PVC Sch. 40	300	264	225	186	150	120	90	66	NR
1/2″	PVC Sch. 80 / CPVC Sch. 80	425	374	319	264	213	170	128	94	NR
0.14.11	PVC Sch. 40	240	211	180	149	120	96	72	53	NR
3/4″	PVC Sch. 80 / CPVC Sch. 80	345	304	259	214	173	138	104	76	NR
	PVC Sch. 40	225	198	169	140	113	90	68	50	NR
1″	PVC Sch. 80 / CPVC Sch. 80	315	277	236	195	158	126	95	69	NR
/ - //	PVC Sch. 40	185	163	139	115	93	74	56	41	NR
1-1/4″	PVC Sch. 80 / CPVC Sch. 80	260	229	195	161	130	104	78	57	NR
/0//	PVC Sch. 40	165	145	124	102	83	66	50	36	NR
1-1/2″	PVC Sch. 80 / CPVC Sch. 80	235	207	176	146	118	94	71	52	NR
- //	PVC Sch. 40	140	123	105	87	70	56	42	31	NR
2″	PVC Sch. 80 / CPVC Sch. 80	200	176	150	124	100	80	60	44	NR
o.''	PVC Sch. 40	130	114	98	81	65	52	39	29	NR
3″	PVC Sch. 80 / CPVC Sch. 80	185	163	139	115	93	74	56	41	NR
	PVC Sch. 40	110	97	83	68	55	44	33	24	NR
4″	PVC Sch. 80 / CPVC Sch. 80	160	141	120	99	80	64	48	35	NR
6″	PVC Sch. 40	90	79	68	56	45	36	27	20	NR

Note: Threading of PVC Schedule 40 and CPVC Schedule 80 pipe is not recommended.

Threading pipe over 4" in diameter is not recommended.

Please see the Flanges and Unions Section of this manual for maximum working pressure of piping systems incorporating those fittings at elevated temperatures.

Procedure for Cutting Threads in Schedule 80 Pipe

1. Cutting

The pipe must be cut square using a power saw, a miter box, or a plastic pipe cutter. Burrs should be removed using a knife or deburring tool.

2. Threading

Threads can be cut using either hand held or power threading equipment. The cutting dies should be clean, sharp, and in good condition. Special dies for cutting plastic pipe are available and are recommended.

When using a hand threader, the dies should have a 5° to 10° negative front rake. When using a power threader, the dies should have a 5° negative front rake and the die heads should be self-opening. A slight chamfer to lead the dies will speed production. However, the dies should not be driven at high speeds or with heavy pressure.

When using a hand held threader, the pipe should be held in a pipe vise. To prevent crushing or scoring of the pipe, a protective wrap such as emery paper, canvas, rubber, or a light metal sleeve should be used.

Insert a tapered plug into the end of the pipe to be threaded. This plug will provide additional support and prevent distortion of the pipe in the threading area.

It is recommended that a water soluble machine oil, chemically compatible with PVC and CPVC, be used during the threading operation. Also, clearing the cuttings from the die is highly recommended.

Do not over-thread the pipe. Consult the diagram and table showing ASTM F 1498 dimensions for American Standard Taper pipe threads. Periodically check the threads with a ring gauge to ensure that the threads are accurate. The tolerance is $\pm 1\frac{1}{2}$ turns.

Installation of Threaded Connections

- 1. Make sure the threads are clean. Charlotte Pipe recommends Teflon* tape as a sealant for threaded connections. Use a good quality Teflon tape which has .4 minimum density, .003" thick, .50% elongation and chemically inert.
- 2. Wrap the Teflon tape around the entire length of the threads; start with two wraps at the end and wrap all threads overlapping half the width of the tape. Wrap in the direction of the threads on each wind.
- 3. Make threaded connections and hand tighten. Further tighten approximately one turn past hand tight using a strap wrench only. Do not use common wrenches or tools designed for metallic pipe systems.

NOTICE

Piping systems differ in chemical resistance. Pipe or fittings may be damaged by contact with products containing incompatible chemicals resulting in property damage.

- Verify that paints, thread sealants, lubricants, plasticized PVC products, foam insulations, caulks, leak detectors, insecticides, termiticides, antifreeze solutions, pipe sleeve, firestop materials or other materials are chemically compatible with ABS, PVC or CPVC.
- Do not use edible oils such as Crisco® for lubricant.
- Read and follow chemical manufacturer's literature before using with piping materials.

NOTICE: Charlotte does **not** recommend pipe joint compounds, pastes or lubricants for thermoplastic pipe as the use of an incompatible compound may result in the degradation or failure of the plastic pipe or fittings.

NOTICE

Exceeding recommended torque for threaded connections may result in component damage, system failure and property damage.

*Trademark of the E.I. DuPont Company

Notes on Threaded Connections:

- Metallic male pipe threads exert high stress levels on female plastic pipe threaded fittings and should be avoided wherever possible.
- Use plastic threaded CTS CPVC male adaptors in cold water applications only.
- Make threaded connections on FlowGuard Gold[®] CPVC systems using Charlotte[®] brass transition fittings. These fittings are available in male, female and drop-ear ell configurations.
- Only join to threaded components conforming to ANSI/ ASME B 1.20.1 or ASTM F 1498.

WARNING

Testing with or use of compressed air or gas in PVC / ABS / CPVC pipe or fittings can result in explosive failures and cause severe injury or death.

- NEVER test with or transport/store compressed air or gas in PVC / ABS / CPVC pipe or fittings.
- NEVER test PVC / ABS / CPVC pipe or fittings with compressed air or gas, or air over water boosters.
- ONLY use PVC / ABS / CPVC pipe for water or approved chemicals.
- Refer to warnings in PPFA User Bulletin 4-80 and ASTM D 1785.

Notice to reduce the risk of property damage:

- Never use pneumatic tools for tightening.
- Never apply more than light pressure on male brass or CPVC threaded fitting when clamping in a vise.
- Never clamp female brass transition fittings in a vise.

NOTICE

Use of FlowGuard Gold[®] CTS CPVC all-plastic threaded male adapters in hot water applications may result in system failure and property damage.

- Use plastic threaded CTS CPVC male adapters in cold water applications only.
- Use CTS CPVC x brass threaded transition fittings for hot water applications.
- Do not use compression fittings with brass ferrules to connect to CTS CPVC pipe or fittings where water temperatures will exceed 140 degrees F.
- CPVC pipe can be used with standard brass ferrules to make compression connections where the operating temperature will not exceed 140°F. Apply Teflon (PTFE) tape over the ferrule to allow for the dissimilar thermal expansion and contraction characteristics of the metal ferrule and the plastic pipe.

The following chart shows the correct amount of tape and torque required to make a properly functioning assembly.

Installation of Brass and CPVC Threaded Fittings							
Torque	Setting						
Brass Threaded Fittings	CPVC Threaded Fittings	Teflon Tape					
14 ft.lbs.	3 to 5 ft.lbs.	½″ width					
18 ft.lbs.	4 to 6 ft.lbs.	½″ width					
24 ft.lbs.	5 to 7 ft.lbs	½″ width					
30 to 60 ft.lbs.	5 to 7 ft.lbs	1" width					
23 to 34 ft.lbs.	6 to 8 ft.lbs	1" width					
36 to 50 ft.lbs.	8 to 10 ft.lbs	1" width					
	Torque Brass Threaded Fittings 14 ft.lbs. 18 ft.lbs. 24 ft.lbs. 30 to 60 ft.lbs. 23 to 34 ft.lbs.	Torque SettingBrass Threaded FittingsCPVC Threaded Fittings14 ft.lbs.3 to 5 ft.lbs.18 ft.lbs.4 to 6 ft.lbs.24 ft.lbs.5 to 7 ft.lbs30 to 60 ft.lbs.5 to 7 ft.lbs23 to 34 ft.lbs.6 to 8 ft.lbs					

Note: 1 foot pound = 12 inch pounds

External Taper Thread Dimensions

*Per ANSI/AME B1.20.1 and ASTM F 1498

PI	PE		* EXTERN	AL THREAD	
Nominal Size In Inches	Outside Diameter In Inches (D)	Number of Threads Per Inch	Normal Engagement By Hand In Inches (A)	Length of Effective Thread In Inches (B)	Total Length: End of Pipe to Vanish Point In Inches (C)
1/4	.540	18	.228	.4018	.5946
3/8	.675	18	.240	.4078	.6006
1/2	.840	14	.320	.5337	.7815
3/4	1.050	14	.339	.5457	.7935
1	1.315	111/2	.400	.6828	.9845
11/4	1.660	111/2	.420	.7068	1.0085
11/2	1.900	111/2	.420	.7235	1.0252
2	2.375	111/2	.436	.7565	1.0582
2 ¹ / ₂	2.875	8	.682	1.1375	1.5712
3	3.500	8	.766	1.2000	1.6337
4	4.500	8	.844	1.3000	1.7337
6	6.625	8	.958	1.5125	1.9462
8	8.625	8	1.063	1.7125	2.1462

Important Information for Fittings with Plastic or Metal Nuts:

P-Traps and Trap Adapters

NOTICE

Pipe or fittings may be damaged by contact with products containing incompatible chemicals, resulting in property damage.

 Verify that paints, thread sealants, lubricants, plasticized PVC products, foam insulations, caulks, leak detectors, insecticides, termiticides, antifreeze solutions, pipe sleeve, firestop materials or other materials are chemically compatible with ABS, PVC, or CPVC.
 Do not use edible oils such as Crisco[®] for lubricant.

Exceeding recommended torque for threaded connections may result in component damage, system failure, and property damage.

Never use thread sealant when installing a P-Trap or a Trap adapter with a plastic or metallic nut. Use of thread sealants could cause seal separation or cause damage to the fitting through over-tightening.

Always hand-tighten threaded connections, plus approximately one turn. Plastic or metal nuts should be tightened with a strap wrench only. Never use common wrenches or tools designed for metallic pipe systems. **WARNING!** To reduce the risk of death or serious injury, read and follow important safety, installation and application information at www.charlottepipe.com

For additional safety, installation and application information please call 800-438-6091. You may also get information 24 hours a day by calling our fax-on-demand number at 800-745-9382 or by visiting our website at www.charlottepipe.com.

Failure to follow safety and installation instructions may result in death, serious injury or property damage.

Joining Roll-Grooved Pipe

Roll-grooved PVC pipe is designed for use with conventional gasketed mechanical couplings. It offers a method of joining which is quick and convenient, and it can be used in applications where frequent assembly and disassembly are desirable.

Installation

 Consult with the manufacturer of the couplings for recommendations on the coupling style(s) designed for use with PVC pipe and the gasket material which is suitable for the intended service.

- 2. Check the pipe ends for any damage, roll marks, projections, or indentations on the outside surface between the groove and the end of the pipe. This is the sealing area, and it must be free of any defects.
- 3. Disassemble the coupling and remove the gasket. Inspect for any damage and make sure the gasket material is suitable for the intended service. Apply a thin coat of silicone lubricant to the gasket tips and the outside of the gasket.
- 4. Slide the gasket onto the end of one length of pipe so that it is flush with the end. Align and bring the end of another length of pipe together while sliding the gasket back over this junction. The gasket should be centered between the grooves and should not extend into the groove on either length of pipe.
- Place the coupling housings over the gasket. The housing keys should engage into the grooves. Insert the bolts and apply the nuts. Tighten to "finger tight."
- Using a wrench, alternately tighten the nuts to the coupling manufacturer's specifications. Over tightening is not necessary, and uneven tightening may cause gasket pinching.

Antifreeze Solutions - Pressure Testing CPVC and PVC Piping at Reduced Temperature

Glycerin antifreeze solutions are recommended for use with FlowGuard Gold[®] and Corzan[®] water distribution systems and for PVC pressure and DWV applications.

Glycerin antifreeze should be diluted to the appropriate concentration that provides adequate protection for the intended application. Maximum freeze protection for glycerin-water solutions is -51.7°F (-46.5°C) and occurs when the weight percent of glycerin is 66.7%. The effectiveness of a glycerin/water antifreeze solution diminishes above this concentration. Freeze points of glycerin-water solutions follow:

Freezing Points of Glycerin-Water Solutions (weight %)

Glycerin by weight (%)	Freeze Point °F (°C)				
0	32.0 (0.0)				
10	29.1 (-1.6)				
20	23.4 (-4.8)				
30	14.9 (-9.5)				
40	4.3 (-15.4)				
50	-9.4 (-23.0)				
60	-30.5 (-34.7)				
66.7	-51.7 (-46.5)				
Greater than 66.7	Not Recommended				

Propylene glycol or ethylene glycol antifreeze solutions are suitable for use in pressure testing PVC and CPVC pressure and DWV piping systems as follows:

A CAUTION

- Solutions greater than 50% propylene glycol are incompatible with PVC and may cause damage to PVC piping systems.
- Solutions greater than 25% propylene or 50% ethylene are incompatible with CPVC and may cause damage to CPVC piping systems.
- Ethylene glycol is compatible with PVC piping systems up to 100% concentrations.
- 25% Propylene glycol solutions are approved for use with potable water systems and provide freeze protection to about 15°F (-10°C), 50% solutions provide freeze protection to -30°F (-34°C).
- Please see the Chemical Resistance chart contained in this manual for complete chemical resistance data.
- Ethylene glycol solutions are toxic and must therefore be avoided in potable water and food processing systems.
 25% ethylene glycol solutions provide freeze protection to about 8°F (-13°C) and 50% solutions provide freeze protection to about -33°F (-36°C).

Antifreeze Solutions for ABS DWV Systems

Only the following antifreeze may be used with or in conjunction with ABS DWV foam core systems:

- 60% glycerol, by weight, in water. Use undiluted.
- 22% magnesium chloride, by weight, in water. Use undiluted.
- "Plastic Pipe Antifreeze" (especially made for plastic pipe).

Do not use any other type antifreeze except those recommended above.

Underground Installation

Trenching

The following trenching and burial procedures should be used to protect the piping system.

- 1. Excavate the trench in accordance with applicable codes and regulations, ensuring that the sides will be stable under all working conditions.
- 2. The trench should be wide enough to provide adequate room for the following.
 - A. Joining the pipe in the trench;
 - B. Snaking the pipe from side to side to compensate for expansion and contraction, if required; and
 - C. Filling and compacting the side fills.

The space between the pipe and trench wall must be wider than the compaction equipment used in the compaction of the backfill. Minimum width shall be not less than the greater of either the pipe outside diameter plus 16 inches or the pipe outside diameter times 1.25 plus 12 inches. Trench width may be different if approved by the design engineer.

- 3. Install foundation and bedding as required by the engineer according to conditions in the trench bottom. Provide firm, stable and uniform bedding for the pipe barrel and any protruding feature of its joint. Provide a minimum of 4 inches of bedding unless rock or unyielding material is encountered in the bottom of the trench, in which case a minimum of 6 inches of bedding shall be used. For more severe conditions the guidelines in ASTM D 2321 should be followed. Blocking should not be used to change pipe grade or to intermittently support pipe over low sections in the trench.
- 4. To prevent damage to the pipe and disturbance to pipe embedment, a minimum depth of backfill above the pipe should be maintained before allowing vehicles or heavy construction equipment to traverse the pipe trench. Pipe should always be installed at least below the frost level. The minimum depth of cover should be established

by the design engineer based upon an evaluation of specific project conditions. In the absence of an engineering evaluation, Charlotte Pipe recommends referring to Section7.6 in ASTM D 2321 "Underground Installation of Thermoplastic pipe for Sewers and Other Gravity-Flow Applications."

Bedding and Backfilling

- 1. Even though sub-soil conditions vary widely from place to place, the pipe backfill should be stable and provide protection for the pipe.
- 2. The pipe should be surrounded with an aggregate material which is easily worked around the sides of the pipe. Backfilling should be performed in layers of 6 inches with each layer being sufficiently compacted to 85% to 95% compaction.
- 3. A mechanical tamper is recommended for compacting sand and gravel backfill which contain a significant proportion of fine-grained material, such as silt and clay. If a tamper is not available, compacting should be done by hand.
- 4. The trench should be completely filled. The backfill should be placed and spread in uniform layers to prevent any unfilled spaces or voids. Large rocks, stones, frozen clods, or other large debris should be removed. ASTM D 2321 standard calls for stone backfill to pass through an 1-1/2" sieve and that rock size should be about 1/10th of the pipe outside diameter. Heavy tampers or rolling equipment should only be used to consolidate only the final backfill.

Additional information is contained in ASTM D 2321 "Underground Installation of Thermoplastic pipe for Sewers and Other Gravity-Flow Applications" (non-pressure applications) and in ASTM F 1668 "Construction Procedures for Buried Plastic Pipe." ASTM Standards are copyrighted documents and can be purchased from ASTM International: 100 Barr Harbor Drive West Conshohocken, PA 19428 or "http://www.astm.org."

Note: This section is a general reference guide and should not be considered a complete engineering resource addressing all aspects of design and installation of pipe in buried applications. Charlotte Pipe recommends that a design professional use this manual along with other industry references taking into account sub-surface conditions unique to each project and that all installations be made in accordance with the requirements found in ASTM D 2321 and in compliance with applicable code requirements.

CTS CPVC Under-Slab Installations

FlowGuard Gold[®] and ReUze[®] CPVC is suitable for underslab installations when approved by prevailing plumbing and building codes.

When performing under-slab installations, it is important that the pipe be evenly supported. Charlotte Pipe recommends pressure testing with water prior to backfilling and pouring the slab. Backfill should be clean earth, sand, gravel or other approved material, which must not contain stones, boulders or other materials that may damage or break the piping. The pipe should be protected from damage by tools and equipment used to finish the concrete. Because CPVC does not react to concrete or stucco and is inert to acidic soil conditions, it does not need to be sleeved. **NOTE:** Some code jurisdictions require sleeving at slab penetrations. Verify code requirements prior to installation.

Do not bend FlowGuard Gold[®] and ReUze[®] 1/2'' and 3/4'' pipe in a radius tighter than 18''; 1'' pipe should not be bent in a radius tighter than 24''.

Check applicable plumbing and building codes before making under-slab installations.

In-Slab Installations

CPVC is not suitable for in-slab radiant heating systems.

CPVC piping can be installed embedded in a concrete slab, because CPVC does not react to concrete or stucco and it is inert to acidic soil conditions.

ABS and PVC Under-Slab Installations

Although PVC or ABS is unaffected by direct contact with or burial in concrete, care must be taken to properly support any piping system when pouring concrete so that the weight of the concrete does not affect the pipe system and that any heat generated by curing concrete does not exceed the capability of the system.

Some codes require sleeving or protection of piping at slab penetrations. While not necessary due to any corrosion issues, always follow applicable code requirements on any installation.

Testing and Inspection

Once the roughing-in is completed on a plastic piping system, it is important to test and inspect all piping for leaks. Concealed work should remain uncovered until the required test is made and approved. When testing, the system should be properly restrained at all bends, changes of direction, and the end of runs.

There are various types of procedures used for testing installed plastic systems. However, a water or hydrostatic

WARNING

In any test, proper safety procedures and equipment should be used, including personal protective equipment such as protective eyewear and clothing. Installers should always consider local conditions, codes and regulations, manufacturer's installation instructions, and architects'/engineers' specifications in any installation.

test is a technically superior test method for inspecting a completed plastic piping system installation and is the testing procedure recommended by Charlotte Pipe. It is also the most recommended test in most plumbing code standards. The purpose of the test is to locate any leaks at the joints and correct them prior to putting the system into operation. Since it is important to be able to visually inspect the joints, a water test should be conducted prior to closing in the piping or backfilling of underground piping.

Testing DWV System

Water Test

The system should be properly restrained at all bends, changes of direction, and the end of runs. To isolate each floor or section being tested, test plugs are inserted through test tees in the stack. All other openings should be plugged or capped with test plugs or test caps.

When testing Foam Core pipe, always use external caps to eliminate the possibility of leakage through the foam core layer of the pipe.

Fill the system to be tested with water at the highest point. As water fills a vertical pipe it creates hydrostatic pressure. The pressure increases as the height of the water in the vertical pipe increases. Charlotte Pipe recommends testing at 10 feet of hydrostatic pressure (4.3 pounds per square inch.) Filling the system slowly should allow any air in the system to escape as the water rises in the vertical pipe. All entrapped air in the system should be expelled prior to the beginning of the test. Failure to remove entrapped air may give faulty test results.

Once the stack is filled to "ten feet of head," a visual inspection of the section being tested should be made to check for leaks. If a leak is found, the joint must be cut out and a new section installed. Once the system has been

successfully tested, it should be drained and the next section prepared for testing.

Testing with or use of compressed air or gas in PVC / ABS / CPVC pipe or fittings can result in explosive failures and cause severe injury or death.

- NEVER test with or transport/store compressed air or gas in PVC / ABS / CPVC pipe or fittings.
 - NEVER test PVC / ABS / CPVC pipe or fittings with compressed air or gas, or air over water boosters.
 - ONLY use PVC / ABS / CPVC pipe for water or approved chemicals.

Refer to warnings in PPFA User Bulletin 4-80 and ASTM D 1785.

Testing Pressure System

- 1. Prior to testing, safety precautions should be instituted to protect personnel and property in case of test failure.
- 2. Conduct pressure testing with water.
- 3. The piping system should be adequately anchored to limit movement. Water under pressure exerts thrust forces in piping systems. Thrust blocking should be provided at changes of direction, change in size and at dead ends.
- 4. The piping system should be slowly filled with water, taking care to prevent surge and air entrapment. The flow velocity should not exceed 5-feet per second for PVC and 8-feet per second for CPVC CTS (see Friction Loss and Flow Velocity charts in this manual).
- 5. All trapped air must be slowly released. All valves and air relief mechanisms should be opened so that the air can be vented while the system is being filled.

WARNING

Entrapped Air

- Pressure surges associated with entrapped air may result in serious personal injury, system failure, and property damage.
- Install air relief valves at the high points in a system to vent air that accumulates during service.
- Failure to bleed trapped air may give faulty test results and may result in an explosion.

WARNING

Testing with or use of compressed air or gas in PVC / ABS / CPVC pipe or fittings can result in explosive failures and cause severe injury or death.

• NEVER test with or transport/store compressed air or gas in PVC / ABS / CPVC pipe or fittings.

- NEVER test PVC / ABS / CPVC pipe or fittings with compressed air or gas, or air over water boosters.
- ONLY use PVC / ABS / CPVC pipe for water or approved chemicals.
- Refer to warnings in PPFA User Bulletin 4-80 and ASTM D 1785.
- 6. Once an installation is completed and cured the system should be filled with water and pressure tested in accordance with local code requirements.
- 7. Any leaking joints or pipe must be cut out and replaced and the line recharged and retested using the same procedure.

NOTICE

Do not exceed the maximum working pressure of any system components including pipe, fittings, valves, molded or cut threads, unions, mechanical coupling or flanges.

- The pressure rating of all components must be reduced at temperatures above 73 degrees F. Refer to de-rating table in this manual.
- Exceeding the maximum working temperature or pressure of the system may result in system failure and property damage.